Acta Crystallographica Section E

Structure Reports

Online

catena-Poly[[cis-diaqua(2,2'-bipyridine)-manganese(II)]- μ-5-sulfonatosalicylato]

ISSN 1600-5368

Sai-Rong Fan and Long-Guan Zhu*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.034$
$w R$ factor $=0.091$
Data-to-parameter ratio $=12.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the title polymeric compound, $\left[\mathrm{Mn}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{6} \mathrm{~S}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, the octahedral coordination geometry of each $\mathrm{Mn}^{\mathrm{II}}$ atom comprises two N -atom donors of one $2,2^{\prime}$-bipyridine ligand, two O atoms, one from a carboxylate and one from a sulfonate group of two 5 -sulfonatosalicylate ligands, and two further O atoms from two water molecules. The molecules, bridged by 5 -sulfonatosalicylate ligands, form a one-dimensional polymeric chain. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the chains generate a two-dimensional hydrogen-bonded layer.

Comment

Recently, the $M^{2+} / 2,2^{\prime}$-bipy $/ \mathrm{H}_{3}$ ssal system ($2,2^{\prime}$-bipy $=2,2^{\prime}-$ bipyridine and H_{3} ssal $=5$-sulfosalicylic acid) has been extensively studied in our laboratory and three complexes with the formula $\left[M(\mathrm{Hssal})\left(2,2^{\prime}-\text { bipy }\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}\left[M=\mathrm{Cu}^{2+}\right.$ for (II), Co^{2+} for (III) and Zn^{2+} for (IV)] were reported (Fan et al., 2005, 2005a,b). These three complexes were synthesized by a onepot solution method. However, for the system $\mathrm{Mn}^{2+} / 2,2^{\prime}$-bipy/ H_{3} ssal, the one-pot solution method did not produce the above-mentioned complex, while the hydrothermal synthesis (Fan et al., 2005c) yielded a monomer, $\left[\mathrm{Mn}(\mathrm{Hssal})\left(2,2^{\prime}-\right.\right.$ bipy $\left.)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$. To investigate systematically the complexes of type $\left[M(\mathrm{Hssal})\left(2,2^{\prime} \text {-bipy }\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, a two-step reaction method was developed and successfully applied to the synthesis of the title polymeric complex, (I).

In (I), each $\mathrm{Mn}^{\mathrm{II}}$ atom adopts an octahedral geometry completed by two N atoms from one $2,2^{\prime}$-bipy, two O atoms from two 5 -sulfonatosalicylate ligands, and two cis-arranged water molecules (Fig. 1 and Table 1). The 5-sulfonatosalicylate dianion acts as a μ_{2}-bridging ligand, linking two $\mathrm{Mn}^{\mathrm{II}}$ atoms by its carboxylate and sulfonate groups and forming a onedimensional polymeric chain. In the chain, two types of hydrogen bonds (Table 2) are formed, between the water molecule and the uncoordinated carboxylate O atom, and between the hydroxyl group and the coordinated carboxylate O atom. Moreover, the water molecules and sulfonate O atoms are engaged in hydrogen bonds (Table 2), which link the

Received 19 December 2005
chains into a two-dimensional hydrogen-bonded layer (Fig. 2) and stabilize the crystal packing.

A comparison of (I) with the three isostructural complexes (II)-(IV) indicates that the geometry around the $\mathrm{Cu}^{\mathrm{II}}$ atom in (II) is distorted octahedral, due to the Jahn-Teller effect, while the geometries around the $\mathrm{Mn}^{\mathrm{II}}, \mathrm{Co}^{\mathrm{II}}$ and $\mathrm{Zn}^{\mathrm{II}}$ atoms are regular octahedral.

Experimental

A mixture of $\mathrm{Mn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.124 \mathrm{~g}, 0.50 \mathrm{mmol})$ and $5-$ sulfosalicylic acid dihydrate $(0.127 \mathrm{~g}, 0.50 \mathrm{mmol})$ in water $(15 \mathrm{ml})$ was stirred at room temperature for $24 \mathrm{~h} .2,2^{\prime}$-Bipyridine $(0.077 \mathrm{~g}$, 0.50 mmol) was added with stirring. The resulting solution was set aside and the solvent allowed to evaporate. After two weeks, paleyellow block-shaped crystals of (I) were obtained by suction filtration.

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{6} \mathrm{~S}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=463.32$
Monoclinic, $P 2_{1} / n$
$a=14.5715$ (7) \AA
$b=7.7080$ (4) \AA
$c=18.3799(9) \AA$
$\beta=112.291(1)^{\circ}$
$V=1910.11(16) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.681, T_{\text {max }}=0.855$
9655 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.091$
$S=1.07$
3395 reflections
277 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{x}=1.611 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5941 reflections
$\theta=2.3-28.2^{\circ}$
$\mu=0.85 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, pale yellow
$0.49 \times 0.28 \times 0.19 \mathrm{~mm}$

3395 independent reflections
3219 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=25.1^{\circ}$
$h=-17 \rightarrow 17$
$k=-9 \rightarrow 9$
$l=-18 \rightarrow 21$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0506 P)^{2}\right. \\
& +0.9955 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.28 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.41 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Mn1-O3	2.1905 (15)	Mn1-N2	2.2309 (19)
$\mathrm{Mn} 1-\mathrm{O}^{\text {i }}$	2.1144 (15)	S1-O1	1.4614 (15)
Mn1-O7	2.2448 (17)	S1-O2	1.4492 (15)
Mn1-O8	2.1213 (16)	S1-O3	1.4585 (15)
Mn1-N1	2.2592 (19)		
O6 ${ }^{\text {i }}-\mathrm{Mn} 1-\mathrm{O} 8$	97.35 (7)	$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{O} 7$	88.99 (7)
O6 ${ }^{\text {i }}$-Mn1-O3	81.05 (6)	$\mathrm{O} 6^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 1$	171.93 (7)
$\mathrm{O} 8-\mathrm{Mn} 1-\mathrm{O} 3$	88.38 (6)	$\mathrm{O} 8-\mathrm{Mn} 1-\mathrm{N} 1$	90.41 (7)
$\mathrm{O} 6^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 2$	99.57 (8)	$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{N} 1$	97.04 (6)
O8-Mn1-N2	162.91 (8)	N2-Mn1-N1	72.59 (8)
$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{N} 2$	91.96 (7)	O7-Mn1-N1	93.56 (6)
O6 ${ }^{\text {i }}$-Mn1-O7	88.13 (6)	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 3$	113.92 (10)
O8-Mn1-O7	93.88 (6)	O2-S1-O1	112.43 (9)
O3-Mn1-O7	169.15 (6)	O3-S1-O1	109.26 (9)

[^1]
metal-organic papers

The authors thank Wenzhou Normal College for the diffraction measurements, the National Natural Science Foundation of China (grant No. 50073019), and the Analytical and Measurement Fund of Zhejiang Province.

References

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02a) and SMART (Version 5.618). Bruker AXS Inc., Madison, Wisconsin, USA.

Fan, S.-R., Zhu, L.-G. \& Xiao, H.-P. (2005). Acta Cryst. E61, m804-m805.
Fan, S.-R., Zhu, L.-G., Xiao, H.-P. \& Ng, S. W. (2005a). Acta Cryst. E61, m509m511.
Fan, S.-R. , Zhu, L.-G., Xiao, H.-P. \& Ng, S. W. (2005b). Acta Cryst. E61, m435m436.
Fan, S.-R. , Zhu, L.-G., Xiao, H.-P. \& Ng, S. W. (2005c). Acta Cryst. E61, m377m378.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

[^1]: Symmetry code: (i) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$.

